
Mathematical Modeling and Analysis

A Memory Efficient Parallel
Tridiagonal Solver
Travis M. Austin, taustin@lanl.gov
Markus Berndt, berndt@lanl.gov
J. David Moulton, moulton@lanl.gov

Introduction
Large tridiagonal systems of linear equations

appear in many numerical analysis applications.
In our work, they arise in line relaxations needed
by robust multigrid methods, such as the parallel
BoxMG code [1], for structured grid problems.
We present a new memory efficient partitioning
algorithm for the solution of diagonally dominant
tridiagonal linear systems of equations that scales
well on distributed memory parallel computers.
This algorithm is in the class of partitioning algo-
rithms. Its multi-level recursive design makes it
well suited for distributed memory parallel com-
puters with very large numbers of processors.

Background
On a serial computer, Gaussian elimination

without pivoting can be used to solve a diago-
nally dominant tridiagonal system of linear equa-
tions inO(N) steps. This algorithm is commonly
referred to as the Thomas algorithm1. Unfortu-
nately, this algorithm is not well suited for par-
allel computers. The first parallel algorithm for
the solution of tridiagonal systems was developed
by Hockney and Golub. It is now usually re-
ferred to as cyclic reduction. Stone introduced
his recursive doubling algorithm in 1973. Both
cyclic reduction and recursive doubling are de-
signed for fine grained parallelism, where each
processor owns exactly one row of the tridiagonal
matrix. In 1981, Wang proposed a partitioning
algorithm aimed at more coarse-grained parallel
computation typical for shared memory clusters,
whereNP << N. There has also been attention

1The references to the papers that we referred to in this section
can be found in [2].

directed toward a parallel partitioning of the stan-
dard LU algorithm. In 1986, Sun et al. intro-
duced the parallel partitioning LU algorithm that
is very similar to Bondeli’s divide and conquer
algorithm. These algorithms, while well suited
for problems distributed across a moderately large
number of processors, do not scale well to very
large numbers of pocessors.

Algorithm
Our algorithm can be described as a recursion

with a partitioning algorithm as its basis. We be-
gin by describing this partitioning algorithm. The
tridiagonal linear system is assumed to be dis-
tributed across a large number of processors, such
that each processor owns a contiguous number of
rows. Each processor transforms its piece of the
tridiagonal matrix into a matrix with a sparsity
pattern such as

Alocal =


✖ ✖ ✖

✖ ✖ ✖
✖ ✖ ✖

✖ ✖ ✖
✖ ✖ ✖

 .

Gathering the first and last rows (red) from ev-
ery processor yields an interface system that is
again tridiagonal and diagonally dominant. This
interface system can be solved by gathering all
equations to one processor, using the Thomas al-
gorithm there, and then scattering the solution
back to allNP processors. Then the interface un-
knowns can be eliminated from the local systems,
yielding NP local tridiagonal systems (blue✖’s).
These local systems can be solved efficiently by
the Thomas algorithm and do not require any fur-
ther communication.

Although this non-recursive single-level ap-
proach scales reasonably well for moderate num-
bers of processors, it does not scale well for very
large number of processors: Gather and scatter
operations typically scale linearly with the num-
ber of of processors. Our remedy is to gather
only pieces of the complete interface system to
a subset of all processors, such that each of these
subset-processors owns a contiguous piece of the

http://math.lanl.gov/, T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

http://math.lanl.gov/


A Memory Efficient Parallel Tridiagonal Solver

line relaxation
BoxMG

number of processors

se
co

nd
s

5004003002001000

16

14

12

10

8

6

4

2

0

Timings for 20 V(1,1) BoxMG cycles with red-
black line relaxation on square processor grids
ranging from2×2 to 22×22.

interface system. Then we apply the partitioning
outlined above to each piece of the interface sys-
tem. This yields a lower level interface system on
the subset of processors. We proceed with further
recursion if the subset of processors is sufficiently
large, or solve the new interface system directly
on one of the processors in the subset.

We describe our algorithm as memory efficient,
since the partitioning step is organized such that
the interface system is generated without over-
writing the original tridiagonal system.

Example
The figure shows timings for 20V(1,1) cycles

with red-black line relaxation on a square proces-
sor grids with constant problem size on each pro-
cessor. We observe very moderate growth in the
solution time, which indicates good parallel scal-
ing of our parallel line relaxation algorithm.

In this example, the line solves are performed
across up to 22 processors, without recursion in
our algorithm. A careful study of the complexity
of this non-recursive algorithm indicates a linear
dependency on the number of processors. Our re-
cursive multi-level tridiagonal solver, would ex-
hibit only logarithmic dependence on the num-
ber of processors. We will investigate the per-

formance of this recursive algorithm in a future
paper.

Acknowledgements
Los Alamos Report LA-UR-04-4149. Funded by the De-

partment of Energy under contract W-7405-ENG-36. The
authors acknowledge the support from the Advanced Simu-
lation and Computing (ASC) Program.

References

[1] T. M. AUSTIN, M. BERNDT, B. K. BERGEN, J. E.
DENDY, AND J. D. MOULTON. Parallel, scalable,
and robust multigrid on structured grids. Technical
report, Los Alamos National Laboratory, LA-UR-03-
9167, 2003.

[2] T. M. AUSTIN, M. BERNDT, AND J. D. MOULTON. A
memory efficient parallel line solver.submitted to SISC,
2004. LA-UR-04-4149.

http://math.lanl.gov/, T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

http://math.lanl.gov/

